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Finite amplitude, impulsively started spin-up and spin-down is analysed for 
axially symmetric flow of a viscous, incompressible, electrically conducting 
fluid confined between infinite, flat, parallel, insulating boundaries. A uniform 
axial magnetic field is present in the initial state, but is subsequently distorted 
by fluid motions. The method of matched asymptotic expansions reduces the 
problem to a first-order, ordinary, nonlinear, integro-differential equation for the 
transient development of the interior angular velocity on the time scale of spin- 
up, as driven by quasi-steady nonlinear Ekman-Hartmann boundary layers. 
This two-parameter equation is solved analytically in certain limits and numeric- 
ally in general. The solutions show that nonlinear non-magnetic spin-up and 
spin-down take longer than for linearized flow, spin-down occurring more rapidly 
in the early stages but requiring more time for completion than spin-up. A 
magnetic field promotes both spin-up and spin-down, but a weak field is relatively 
ineffective for spin-down yet very effective for spin-up. A strong magnetic field 
dominates nonlinear processes and gives identical spin-up and spin-down times, 
which coincide with that found from linear hydromagnetic theory. 

1. IntrQdUCtiQn 
The magnetohydrodynamics of rotating fluids is a subject motivated by several 

important problems in geophysics and astrophysics. It is ultimately expected to 
provide explanations for the observed maintenance and secular variations of the 
geomagnetic field (e.g Hide & Roberts 1961) and clearly must also underlie 
much of the solar physics involved in sunspot development, the solar cycle, 
and, more generally, the structure of rotating magnetic stars. A recent specific 
question of considerable interest is whether or not the interior of the sun could 
still be rotating some twenty times faster than the observed surface, as proposed 
and supported on observational grounds by Dicke (1970). In  this context, it is 
essential to know whether electric currents flowing in the sun’s convective 
envelope can provide electromagnetic coupling with the radiative interior. 

Many of these flows are unsteady, rotating, stratified, strongly nonlinear, 
fully coupled in the hydromagnetic sense and dissipative (viscously, thermally 
and ohmically). Given such an inclusive set of complexities, it behoves us t o  
develop simplified but well-posed problems that contain as many interacting 
ingredients as possible. In this paper attention is focused on a prototype 
situation in rotating MHD that features all of these intricacies except stratifica- 
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tion and thermal diffusion. Specifically, we solve the spin-up problem for a homo- 
geneous fluid in a laterally unbounded cylindrical geometry but with strong 
nonlinearity and complete hydromagnetic interaction included. Direct applica- 
tion to the relevant physical problems is, of course, hampered by the necessary 
idealizations. For example, restriction to axisymmetric flow excludes dynamos 
(but some points of contact with dynamo theory are noted in $ 6). The neglect 
of density stratification and compressibility is also severe, but necessary at  this 
stage, while the artificial container geometry may be less objectionable (this is 
discussed further below). The work sheds light on two items of general interest 
that have received little prior consideration: first, the asymmetry between 
spin-up and spin-down that is associated with strong nonlinearity and, second, 
the quantitative degree to which a magnetic field tends to couple together fluid 
regions with different angular velocity. 

2. Boundary-layer and interior ex- 
pansions are introduced in $93 and 4, respectively. Matching and solution of 
the boundary-layer problem in $ 5reduces the calculation to integration of a single, 
nonlinear, ordinary, integro-differential equation for the evolution of the 
interior angular velocity. Both analytical and numerical solutions are dis- 
cussed in § 6. 

The general formulation is presented in 

2. Formulation 
A homogeneous, viscous, electrically conducting fluid fills a vertical circular 

cylinder of depth 2d and radius Y,. The cylinder is taken to be smooth, solid and 
electrically insulating (one can rationalize this as a crude simulation of the 
turbulent convective envelope of the sun by a fluid of infinite eddy viscosity, 
and infinite diffusivity for electric currents). Prior to some initial instant t = 0,  
both fluid and container are in uniform co-rotation a t  angular speed 0, 3 0 about 
the vertical ( x  axis) and a uniform axial magnetic field €3 = B, 2 is present every- 
where. At time t = 0, the container angular speed is impulsively changed to the 
value 0, 3 0 and then held fixed; no horizontal perturbations in magnetic field 
are allowed to develop at  1x1 = 00. 

An approximate method is used to examine, on the Ekman spin-up time scale, 
the ensuing flow development in which the fluid spins up (if S Z ,  > 0,) or spins 
down (if SZ ,  < SZo) to the new rigid rotation. Ultimate interest is in the actual time 
duration of the transient flow (referred to as the ‘spin-up time’ in either case, 
for convenience) and in the fluid-dynamic mechanisms responsible for the finite 
transition in angular velocity. 

In  a surprisingly wide variety of contained rotating flows of homogeneous 
fluids in the absence of magnetic fields, boundary layers on lateral surfaces 
parallel to the rotation vector exert only a secondary indirect influence on 
spin-up of the interior fluid, compared with Ekman layers (Greenspan 1968; 
Kroll & Veronis 1970). Indeed, the weakly nonlinear, non-magnetic spin-up 
theory developed by Greenspan & Weinbaum (1965) supports the following 
conclusion: on the time scale for spin-up, the temporal evolution of the angular 
velocity at the axis of an arbitrary smooth axially symmetric container depends 
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only upon the geometry of the container in the polar regions; the shape of 
side walls has no direct effect whatever. To be precise, the same function of time 
describes moderately nonlinear spin-up a t  the axis of, for example, a sphere, an 
oblate or prolate spheroid, a circular cylinder, or a container formed by two 
infinite flat plates (i.e. a circular cylinder of infinite radius). This relative un- 
importance of side-wall boundary layers is also confirmed experimentally by 
recent work of Bien & Penner (1970). 

The effect of side-wall layers on linear spin-up in the presence of an axial 
magnetic field can be partially deduced from the work of Ingham (1969), who 
studied steady flow at small magnetic Reynolds number in an insulating cylinder 
with differentially rotating top and bottom. In  the range of parameter space 
which interests us here, the side-wall boundary layers were found to be (as in 
non-magnetic flow) of the Stewartson type, i.e. they continue to play a passive 
role. Consequently, we ignore side walls in the present work. A rigorous way to 
do this is to remove them laterally to infinity by taking the limit r,/d -+ 00. The 
spin-up problem is henceforth treated here for the pure Ekman-type geometry 
originally demonstrated to be relevant by Greenspan & Howard (1963). 

In non-rotating cylindrical co-ordinates ( r ,  8 , z )  the basic dependent variables 
are, with standard notation, 

v = (u,w, w),  A ( ~ , u - * B  = ( u , ~ , c ) ,  7~ = p/p, 

so that the motion is described by the MHD equations in the form 

&/at + V(&V. V) + (V x V) x v = - Vn + (V x A) x A - VV x (V x v), (1) 

( 2 )  

v.v = 0. (3) 

V.A = 0. (4) 

( 5 )  

v = Clod, n = +!2ir2, A = (p,u)-tB,4 = co2 for t 6 0, (6) 

aA/at = V x (V x A )  - hV x (V x A),  

Since A is initially solenoidal, the divergence of ( 2 )  implies the redundant but 
useful condition 

Once A is known, the electric current j follows from 
j = p-1V x B = (p/p):V x A. 

Prior to the impulse, the initial conditions in the fluid are 

where co is the undisturbed Alfv6n speed. Within the insulating cylinder and 
vacuum outside it, no currents flow so Ais always both irrotational and solenoidal 
there. In  the supposed absence of radial and tangential perturbations of A as 
IzI 3 00 it then follows that A remains at  most a vertical vector everywhere 
outside the fluid region (non-zero axial perturbations in A must be allowed 
because of field-line stretching or compression; this point is explained more fully 
below). Continuity of the magnetic field at the fluid-boundary interface then 
sets this same requirement as a boundary condition within the fluid. Consequently 
the boundary conditions are 

where the origin of co-ordinates is midway between the top and bottom of the 
cylinder. 

v =  Q1r6, A x & =  0 a t  z =  f d ,  for t > 0, (7) 

22-2 
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Equations (1)-(4), (6) and (7)  contain six dimensional parameters ( v ,  h, Q0, Rl, 
co,d) each of which involve at most length and time. The four dimensionless 
parameters that can be formed are chosen as 

E = v/Qd2 = Ekman number, 

E ,  = h/Rd2 = l/puaRd2 = magnetic Ekman number, 

a = c0/(2hQ)B = (r*BO/(2pR)* = magnetic interaction parameter, 

E = (R, - Ro)/Q = Rossby number. 

In  these expressions, R denotes the larger of Ro and Rl, so that for spin-up 
(spin-down) R is Rl (Qo); as a result, E is positive for spin-up, negative for spin- 
down and - 1 < E < + 1, where E = - 1 is the case for spin-down to rest and 
E = + 1 denotes spin-up from rest, these last cases being the strongly nonlinear 
limits. In  terms of these parameters, the magnetic Prandtl number v/h is EIE,. 

In the balance of this work attention is confined to the case of small viscosity 
but with the other dimensional parameters fixed. Since v occurs only in E, this 
implies 

The case e -+ 0, corresponding to linearized flow, has been analysed by Loper & 
Benton (1970). The present work extends theirs to the complete nonlinear range, 

It is natural to scale all lengths with d, the time with the non-magnetic Ekman 
spin-up time and the vector A by its initial amplitude co. Together with von 
K&m&n radial dependence, which holds without approximation in the present 
geometry, we set 

7 = (vR/d2)*t = E:Rt, 

v(?, 2, t )  = Q 4 ( r / d )  F ( L 7 )  F + ( r / 4  G(C, 7 )  6 + H ( L  7 )  21, 
A(?, 2, t )  = c,[(r/d) K ( L 7 )  f + ( r / 4  -Uc, 7) 0 + M(C, 7 )  21, 
n(r, 2, t )  = *Q2."(5,7) + Q2d2&([, 7). 

E + 0, E M  = O(E"), = O(EO), - 1 6 E 6 + 1. 

/ E l  < 1.  

5 = x/d, 1 (8) 

With this scaling, the components of the fundamental equations (1)-(4),  initial 
and boundary conditions ( 6 )  and (7)  take on the form 

(9) 

(10) 

E*Fr - EF,,+ HF, + F2 = - P + G2+ ~ L Y , ~ E ~ , ~ , ( H K ,  - 2L2), 

EiG, - EG,, + HG, + 2FC = ZLX~E,(ML, + 2KL), 

EtH, - EH,, + HHC = - Q,, 

EBK, - EMK,, + HK,  = MFc, 

P, = - 4a2E,(KK, + LL,), (1 l), (12) 

EgL, - E, L,, + HL, = il!.fG,, (13), (14)  

E*M,-E,M,,+HM,-H,M = 0, (15) 

HS+2F = 0, Hc+2K = 0; (16L (17)  
at 7 = 0, 

F = H = K = L = Q = 0, P = Rg/R', G = Ro/R, M = I; (18) 

for r > 0, at < = 1, 
F = H = I< = L = 0, C = RJQ. 
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The techniques available for solving problems of this type are severely limited. 
The now standard approach is to use the method of matched asymptotic ex- 
pansions, which is essentially straightforward, though complicated, for the 
problem a t  hand. An alternative is the technique used by Greenspan & Weinbaum 
(1965) in their study of moderately nonlinear, non-magnetic spin-up. It involves 
an iterative approximation to the nonlinear differential equations together with 
asymptotic expansions for the boundary layers and inviscid interior ; uniform 
validity in time is achieved by co-ordinate stretching in the manner of PoincarB, 
Lighthill and Kuo. Despite its ability to handle the complexities of arbitrary 
container geometry, this technique is unsuited for present purposes for several 
reasons. It is far from clear that extension to hydromagnetic flow is possible 
from a practical viewpoint. Furthermore, the time dependence (of paramount 
interest) is found in implicit form only. Finally, the method is sufficiently 
unwieldy to be incapable of covering the complete range of Rossby number 
(in $ 6  it is shown that the solutions of Greenspan & Weinbaum cannot be 
used for E 2 $; a secondary purpose of the present work is to remove this 
deficiency). 

The technique of matched asymptotic expansions is effective here largely 
because the linearized problem is well understood (Benton & Loper 1969; 
Loper & Benton 1970). First note that because EM, cz and B are of order EO, the 
present problem is anticipated to display the same structure with respect to 
Ekman number as for the linear case (6 -+ 0) .  In  particular, this implies that the 
spin-up time should still be proportional to E-4, or, with present scaling, 
rs = O(Eo). On this long time scale, a diffusively growing magnetic boundary 
layer would grow to a thickness (At)* - Ej$Ead, whereas an Alfvth wave would 
traverse a distance cot N olEh4E-4d. For a and EM of order EO, it is seen that 
magnetic diffusion or AIfv6n propagation has ample time to influence all of the 
fluid. Since these two processes constitute the limiting situations in linearized 
flow (see Benton & Loper 1969, pp. 578-579) we conclude that electric currents 
will be important everywhere in the interior, on the time scale of spin-up. Thus, 
spin-up is expected to be controlled nonlinearly by quasi-steady Ekmaii- 
Hartmann boundary layers which are themselves nonlinear. A solution is sought 
which varies on a single time scale 7 - EO, and two vastly different spatial scales, 
one being the thin scale of Ekman-Hartmann layers (refer to Gilman & Benton 
1968), the other being the comparatively thick scale of the inviscid interior 
(essentially 2 4 .  The next two sections introduce asymptotic expansions of the 
solution functions valid in each of these two regions. 

In what follows, it must be remembered that, while for linear problems it is 
legitimate to  regard any unknown solution function as an additive super- 
position of an interior solution plus boundary-layer correction which vanishes 
(usually with exponential rapidity) as the interior is approached, in the non- 
linear situation at  hand, superposition fails. A more convenient approach is to 
regard the total solution as being given by a single term whose form changes as 
one's point of focus shifts from the interior to the boundary layers, or vice 
versa. 
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3. Asymptotic expansions for the Ekman-Hartmann boundary layers 
= 0, it suffices to examine the 

solution functions within just one of the boundary layers, say the lower one. 
There, the appropriate stretched spatial variable is 

By the basic reflexional symmetry about 

7 = E-*(l+C), (20)  

and each of the unknown functions (3, G, H ,  P, Q, K ,  L, M )  takes on the form 
of an asymptotic power series, for example, in the boundary layer, 

P(L 7) = f(r, 7) = fo(7, 4 + E%(% 7) + J v 2 ( %  7) + . * * * 

Lower-case letters are used consistently to denote the form of any function within 
the boundary layers. Such expansions are substituted into equations (9)-( 17) 
and coefficients of like powers in E4 are equated to zero. Each leading boundary- 
layer function (f,, go, . . .), since it represents the total solution in the asymptotic 
limit E -+ 0, is required to satisfy the appropriate exact boundary condition 
given in (19), while higher order terms satisfy homogeneous boundary conditions. 
Many terms in the asymptotic expansions are found, in this way, to be identically 
zero or to be functions of time only. For example, to lowest order in E*, the 
continuity equation (16) becomes h,, = 0 and the homogeneous boundary con- 
dition in (19) then requires that h0(7) = 0. Similarly, it is found that k,, I , ,  p l ,  q1 
and m, are zero, whereas m,, p ,  and qo are independent of 7. The equations which 
determine the non-zero functions of lowest order in E* are then given by 

- hlf,, -ft + st = Po(7) - 2a2E,m0(4 kl?p (21) 

( 2 2 )  907, - h1g0, - 2fogo = - 2a2E,m,(7) 4,’ 
kl,, = - Ezflmo(.r)fo,, (23) 

I, , ,  = -E?;;lm,(T)go,, ( 2 4 )  

h,, = - 2f0. (25) 

These equations show that the boundary-layer problem is inertially and electro- 
magnetically nonlinear. However, since time derivatives are absent, the boundary 
layers are quasi-steady and time plays the role of a passive parameter. Equa- 
tions ( 2 3 )  and ( 2 4 )  reveal that induction of horizontal fields by shear-induced 
tipping of the axial field is balanced by magnetic diffusion within these boundary 
layers. The boundary-layer analysis places no dynamic restriction on the leading 
contribution t o  the axial magnetic field, m,, other than that it be spatially 
uniform within the boundary layer; this suggests that m0(7) will be determined 
by the interior dynamics and is not an unknown in the boundary-layer problem. 
Finally, note that although the magnetic Ekman number occurs separately in, 
for example, (21) and ( 2 3 )  it disappears when ( 2 3 )  is substituted into the 7 
derivative of (21). 

The boundary-layer equations can be compacted by introducing two complex 
functions (denoted by a tilde) of the real variables (7; T), where the semicolon 
emphasizes the passive nature of T within the boundary layers: 

(26) f(7; T,  fo(T; 7) + igO(7; 7); L( . f ;  7) = k1(7; 7) + &(7; 7)- 
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(27) 

With this notation, the boundary-layer problem can be expressed as 

f,,, - hlf?, - Pl, + 2 f +  2a2mm1fq  = 0, 

J O  

k,, = - Ej$m0(7)f,, (29) 

f(0;7) = i Q,/Q, k (0;7) = 0, (30) 

where the asterisk in (28) signifies a complex conjugate. In  this form, the cubic 
nonlinearity of the electromagnetic body force is to  be noted. Clearly, to complete 
the specification of the boundary-layer problem, two more conditions on J” and 
one more on E are required. These are supplied by matching the boundary-layer 
expansions to interior expansions. The problem given by (27), (28) and (30) 
reduces properly, in the non-magnetic limit 01 --f 0, to one treated by Fettis (1955). 

4. Asymptotic expansions for the inviscid interior 
When attention is shifted from the boundary layers to the inviscid interior, 

then the spatial scale for variation of any solution function changes to  the depth 
of the interior fluid, which is of order 2d when the boundary layers are thin. 
Thus, the correct variable for outer expansions is Sand hence all spatial derivatives 
are weaker (in powers of E t )  than within the boundary layers. 

Since H ,  K and L are zero to order E4 within the boundary layers, they must 
(from considerations of smooth matching) remain zero to that same order in the 
interior, i.e. if capital letters are retained to denote any function evaluated within 
the interior but with a subscript to indicate the power of E*, we have 

Ho = KO = Lo = 0. 

From (1 1) and (12) this in turn implies that Qoc = Qls = Pos = Pls = 0 and the 
values which merge smoothly into the boundary-layer values are clearly 

Po = P0(7) = po(7), PI = 0, Qo = Q0(7) = p0(7) and Q1 = 0. 

Since KO = 0,  equation (17) plus matching with the boundary layer show that 
No = M0(7) = m0(7). Because m, is zero within the boundary layer, it then must 
remain zero in the interior. Hence, from (17), K ,  = 0. These arguments motivate 
interior expansions of the form 
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These are now substituted into (9), (10) and (13)-( 16) and coefficients of the 
terms of order Eo and E* are equated to zero. Each equation in this set (except 
for (15), which is already satisfied to order Eo) produces two new relations as 
follows: 

F t  = - Po(7) + GE, 

Go, + HlGog + 2FoG1+ 2FiGo = 2a2E,Mo(7) L,,, 

(32) 

Fo,+HlFoE+2FoFl = 2GoGl, FOGo = 0,  (33)) (34) 

(35) 

M, F,, = 0, Mo Fls = 0,  MoGog = 0, (3% (371, (38) 

MOG,, = -E,L,,,, Mo,-H,,Mo = 0, (391, (40) 

Fo = 0, Hl, = - 2E;. (41L (42) 

Since (41) implies that there is no radial motion in the interior to leading order, 
(32) and (38) show that the azimuthal flow evolves in time as a geostrophic rigid 
rotation which satisfies the Taylor-Proudman constraint (as for non-magnetic 
flow, see Greenspan & Weinbaum 1965): 

Go = G0(7). (43) 

With Mo a function of T only, (40) implies that Hls (and hence Fl, by (42)) is 
a function of 7 only. Because Fo = 0, equation (33) shows that G, = 0, whence Go 
is the azimuthal flow to order E. By (39) then L,, is a function of 7 only which 
is also consistent with (35). 

The main equation of interest, namely that for the temporal evolution of the 
interior angular velocity (35) ,  can be written as 

dG0(7)/d7 = - 2F1(7) Go(7) + 2 G 2 E ~ M 0 ( 7 )  L ~ ( T ) .  (44) 

The interpretation of this equation is aided by finding the electric current 
in terms of the scaling introduced. Substitution of (8) into ( 5 )  gives 

so the azimuthal field component L corresponds to axial current, and its vertical 
derivative (the last factor in (44)) is a radial current. Clearly, spin-up or spin- 
down results from two distinct mechanisms in (44). An azimuthal electro- 
magnetic body torque arises from the interaction of radial currents (LlC) crossing 
the axial magnetic field (Mo).  Simultaneously, or in the absence of magnetic 
fields (a  = 0 ) ,  spin-up or spin-down occurs because interior fluid parcels conserve 
their angular momentum as they drift radially under the influence of secondary 
flow induced by Ekman boundary layers, and vorticity is added by the stretching 
of vortex lines (from (42), the radial flow factor -2F, in (44), is the same as 
HI,, and this measures the rate of extension of a vertical line element). Note 
further that both of these physical mechanisms are actually nonlinear, although 
they can be represented within a linear theory. 

Finding the solution for G0(7) first requires determining how F,, L,, and M, 
depend functionally on Go. To the order we have worked, time derivatives of 
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F, and L,, do not occur in the interior equations, so the interior radial flow and 
radial current simply respond to the boundary-layer forcing (in essence, the 
inviscid interior is connected to and driven by an Ekman-Hartmann pump). 
However, the axial field M, has its own interior dynamics (as anticipated pre- 
viously) and, by virtue of (40) and (42), is given by 

cEM,(~)/d7 = i?&(7) M,(7) = - 2F1(r) Mo(r). 

The work of Benton & Loper (1969) reveals that a (linear) Ekman-Hartmann 
boundary layer requires at most of order 2 radians of boundary rotation to 
develop, starting from rest. With the present scaling, this corresponds to a value 
of 7 = 2E). For consistency with the asymptotic limit E --f 0, this boundary- 
layer formation time is ignored, and an initial condition for (46) is that given in 
(18). The relevant solution for Mo(r) is then 

M,(r) = exp [ - 2!3,(r') d ~ ' ]  . (47) 

The transcendental nonlinearity evident here is a feature of major interest. 
Equation (40) reveals that, on the long time scale for spin-up, the term describing 
magnetic diffusion of vertical flux is identically zero within the interior, so the 
secondary flow simply convects axial magnetic field as though that component 
were frozen into the fluid. Just as the Ekman suction (or blowing) stretches (or 
contracts) axial vortex lines, so it also stretches (or contracts) axial magnetic 
field lines. Consequently, the basic axial field amplifies exponentially during 
spin-up because F, < 0 and decays during spin-down because then Fl > 0. This 
nonlinear change in axial field is communicated, unabated, across the boundary 
layers (recall that i3mO/8y = 0 )  and, by continuity of field, all the way to spatial 
infinity. This explains why only horizontal perturbations in the field can be 
required to vanish at  1x1 = 00. By way of contrast, in linear hydromagnetic 
spin-up (Loper & Benton 1970), the interior axial magnetic field is treated as 
constant (as is the factor Go in the hydrodynamic spin-up mechanism given by 
the term - 2F1G0 in (44)). 

When (47) is substituted into (44), we obtain the interior problem in the form 

dG,o = - 2F1G0 + 2a2E, L15exp 
dr  

subject to the initial condition (from 18) 

Go(0)  = !2,/!2. (49) 

5. Matching of the expansions and solution of the boundary-layer 
problem 

Solution of the interior equation (48) necessitates relating the radial flow Fl 
and radial current L,, to the angular velocity G,. In  view of the solenoidal nature 
of both velocity and electric current, this is tantamount to finding the functional 
relationship between vertical velocity, vertical current and angular velocity (or 
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vertical vorticity). The vertical velocity and current are found simply in the 
interior, since they obey the interior equations (from (39) and ( 4 2 ) )  

HICC = 0, LlCZ = 0. (50) 

By reflexional symmetry there can be neither mass flux nor charge flux (i.e. 
current) crossing the mid-plane 6 = 0, so one boundary condition for each of 

(51) 
these equations is 

The other conditions arise from matching. The vertical velocity and electric 
current established by the Ekman-Hartmann pump at the outer edge of the 
boundary layer (y -+ 00) must be the same as that seen from the interior as 
5 3- 1, where the boundary-layer thickness, being of order E8 (Benton & Loper 
1969), is ignored in the limit E + 0. Hence, 

Hl(O, 7 )  = 0, Ll(o, 7 )  = 0. 

HI( - 1 , ~ )  = hl(00; 7 ) ,  L1( - 1 , ~ )  = Il(00; 7) .  ( 5 2 )  

H1(6,7) = - h(w; 7 )  6, Ll(6, 7 )  = - 4(00; 7 )  C. (53) 

&(7) = -+HI[  = ih l (w;T) ,  hl~(7) = -$1(c0;7), 154) 

The solutions of (50) - (52)  are 

Consequently, 

so that (48) becomes 

d7 !%@ = -hl(co; 7) G0(7) - 2a2E,Z1(co; 7) exp [ -So’h,(m; 7’ )  d+]. (55) 

This serves again to emphasize how the interior angular velocity is driven by 
the Ekman-Hartmann pump through its induced axial velocity hl(co; 7 )  and 
axial electric current Zl(m; 7 ) .  

It remains to  solve the boundary-layer problem (27)-( 30) in order to evaluate 
hl(co;7) and Z1(0o;7) as functions of G0(7) for insertion into (55). Two outer 
boundary conditions €or f and one for E still need to be specified. Clearly, all the 
non-vanishing order Eo quantities in the interior (Go, Po, Q,, M,) must coincide 
wihh the values found at the outer edge of the boundary layers, so 

f(00; 7 )  = iGo(r), m0(7) = Ho(7). (56) 

Also, since the interior flow has no order Eo vertical variation, 

fv(00;7) = 0. 

For k it is sufficient to require boundedness, 

( 5 7 )  

1&(00;~)]  < 00. (58) 

The complete problem to be solved is now expressible in sequential form. 
From ( 2 7 ) ,  ( 2 8 ) ,  (30), (47), (54), (56) and (57) the problem forfis given by 

fvvv - h1& - k17 + 2f+ 2a2exp 

f(0; 7 )  = iQl/Q, f(00; 7 )  = iG0(7), f?(00; 7 )  = 0. I 
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From the defining equation (26), this in turn gives fo(r]; T )  and go(r]; T )  in terms 
of C O ( T ) .  The Ekman pumping function hl(co; T )  is also determined, by the middle 
equation of (59). Oncefis known, then Ic,  and I, are found via (26) and the follow- 
ing problem (which arises from (29), (30), (47), (54), (56) and (58)) 

&(O;T) = 0, ~ L ( C O ; ~ ) [  < CO. J 
The solution of (60) determines the Hartmann current function Z,(CO; 7 ) .  The 
final step requires solving the interior equation (55) subject to (49). 

There are three distinct sources of nonlinearity in (55). From (59) and (BO), 
it is clear that f and hence E depend nonlinearly on Go. This shows up in (55) 
as nonlinear dependence of the Ekman pumping function hl(co; T) and Hartmann 
current function Z1(oo; T )  on G0(7). This is referred to as the ‘boundary-layer 
nonlinearity ’. In  effect, the interior is connected to a nonlinear Ekman-Hartmann 
pump. A second nonlinearity is the ‘inertial nonlinearity’ represented by the 
term G0(7) on the right-hand side of (55), which is approximated by the constant 
initial value Go(0) = 1 in linear theory. Finally, the transcendental ‘electro- 
magnetic nonlinearity ’, the exponential term in (55), expresses temporal changes 
in the basic axial field forced by the Ekman-Hartmann secondary flow. 

The question now arises of how to handle the various nonlinearities. Un- 
doubtedly, the effects of the inertial and electromagnetic nonlinearities are least 
well known so they are treated exactly in what follows. However, it has been 
found expedient and sufficiently accurate to approximate the boundary-layer 
nonlinearity by what is, in effect, a regular perturbation expansion in Rossby 
number truncated after the terms quadratic in that parameter. A first rationale 
for this step rests on the observation that existing solutions for steady nonlinear 
Ekman boundary layers (summarized, for example, in Greenspan 1968, p. 140) 
reveal only modest departures of Ekman pumping from the predictions of linear 
theory unless the nonlinearity is strong (say I E ~  3 0.5). The corresponding situa- 
tion for steady nonlinear Ekman-Hartmann layers is clarified by recent work 
of Benton & Chow (1972). It is found there that Ekman pumping and Hartmann 
current as predicted by a quadratic Rossby number expansion can each be in 
significant disagreement with exact numerical solutions. However, for spin- 
up or spin-down, the particular combination of these quantities that occurs 
(developed below) is predicted very well indeed by the cruder technique 
(because the discrepancies in the individual predictions tend to compensate 
each other). 

It should be noted that both the inertial nonlinearity and the electromagnetic 
nonlinearity are initially zero but develop as time progresses (the former because 
initially the interior angular velocity has not yet changed, the latter because 
field lines have not yet been stretched or contracted). In  contrast, the boundary- 
layer nonlinearity is strongest initially, because then the angular velocity 
difference across the layers is largest. This suggests that the relative importance 
of boundary-layer nonlinearity can be studied in isolation by defining the strength 
8 of a nonlinear Ekman-Hartmann pump as the initid angular acceleration it 
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FIGURE 1. Strength of a steady Ekman-Hartmann pump for ( a )  spin-up and (6) spin-down 
(after Benton & Chow 1972). -, exact numerical solution; 0 ,  quadratic Rossby number 
expansion. 

produces in the spin-up problem. Evaluation of ( 5 5 )  at 7 = 0 with the given 
initial condition on Go yields 

(61) 
- hl(co; 0)  (1 - E )  - 2a2E,11(co; 0 )  for spin-up, S E A  

a 2 7 ) 1 7 = 0 =  { - hl(m; 0 )  - 2a2E,11(co, 0 )  for spin-down. 

Figures l ( a )  and ( b ) ,  based on work by Benton & Chow (1972), show that S ,  as 
measured by these expressions, is very well approximated for all a and all 
I E I < 1 by a two-term expansion in Rossby number, thereby justifying the method 
adopted below. In these figures, the solid curves are the results of full numerical 
integration whereas the solid points result from the truncated expansion. 

Because the initial condition for spin-up differs from that for spin-down, the 
analysis must be bifurcated at  this point. 

5.1. Boundary-layer problem for spin-up 

When the fluid is spinning up, !2 = Q1 and therefore E = 1 - fio/Q1 3 0. Also, 
for this case Go(0) = Qo/Q1 = 1 - e  and Go(co) = 1 so the following equality 
holds: 0 < 1 - Go(7) < E 6 1. The quantity 1 - G0(r) measures the instantaneous 
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deviation of the interior angular velocity (or vorticity) from its final value so 
it plays the role of an instantaneous Rossby number. The task at  hand requires 
finding from (59) how f and hence h, depend upon this essentially passive para- 
meter. We proceed as if E ,  and thus I - Go(r), were truly small, i.e. we first content 
ourselves with an approximate solution linear in 1 - G0(7). Expanding about 
conditions a t  the boundary, let 

f (7 ;~ )  = i-i[l -Go(~)] f ( l ) (?) .  

The middle equation in (59) then becomes 

so that the quantity in the exponential of the first equation in (59) is 

Since I - Go is regarded as small and the spin-up time is expected to be of order 
7s N 1, the first integral factor here is small. Hence, the exponential is expandable 
in rapidly convergent power series. The terms linear in 1 - C0(7) in the first 
equation of (59) then lead to the following problem for f ( l ) ( y )  : 

f;;’ ,-(2a2+2i)fp = 0, f(l’(0) =f;”(m) = 0,  f(”(c0) = 1. 

This is just the problem for a steady linear Ekman-Hartmann boundary layer 
(Gilman & Benton 1968), the solution being 

f(U(7) = 1 - e-(B+Wv, 

where p =  [a2+(1+~4)+]3 ,  y = p - l =  [ - a z + ( 1 + ~ 4 ) + ] + .  

Thus, to first order in 1 - G,(T), the boundary layer is just a linear Ekman- 
Hartmann layer with passive time-varying azimuthal flow outside and constant 
axial magnetic field. 

The first correction for nonlinear effects is determined by setting 

f(7; 7) = i -i[l - G0(7)] [l - e-(P+ir)71 ] - if@)(v; 7)) 

where If@)(v; T)/ tends to zero faster than E or 1 -Go. This is now substituted into 
(59); the exponential term is again expanded in power series, and a linear 
equation for p2) is developed. The solution of this equation is straightforward, 
though laborious, the result being the following approximation for f, which is 
exact to second order in 1 - Go: 

f(7; 7 )  = i - i[l- Go(?)] [1 - e-(P+ir)v] - i[ 1 - [(A? + B )  e-@+ir)v - B e-2Be] 
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Equation ( 6 2 )  has now to be used for evaluating hl(oo; 7) and Zl(co; 7). Since 
(60) is exactly integrable no further approximations are required. The results are 

- h 1 ( ~ ; 7 )  = rl[l- G0(7)] + r2[1- GO(7)l2 

+ Za2F3[I - G0(7)] [ 1 - Go(+)] dT’, ( 6 3 )  SI 
I1 -Z1(0o;7) = Ekl { exp [ --f)l(C0;7t)d7’ 

x ( r4[1 - G0(7)] + r5[1 - GO(7)l2 + 4a2r6[1 - G0(7)] 

(64) 

where 

P r4 = - (P2 + Y2)4  ’ p2 + 7 2 ’  

p- 3y2 

(P2 + Y2)4  
r6 = - 

r3 = - 4Y2(3P2-Y2)  

19p4 + 4 + y4 r - -  
- p(p2 + y2)3 ( 9p2 + y 2 )  ’ 

( 6 5 )  I 
In  equations ( 6 3 )  and (64) the coefficients rz and r5 ( r3 and r,) measure the effect 
of inertial (electromagnetic) nonlinearity within the boundary layers. When (63) 
and (64 )  are substituted into (551, we finally obtain at last the following first- 
order, ordinary, nonlinear, integro-differential equation to be solved for G0(7) : 

G;(T) = G,(I - a,) { rl + rz(i - G,) + 2a2r3S:[i - a 0 ( q  art) 

r4+ I?,( 1 - Go) + 4a2r6/:[1 - G ~ ( T ’ ) ]  dr’) 

2 
x exp (2/0T[r1( I - Go) + I?,( 1 - Go)2] d7’ + 2aT3 [ /:( 1 - Go) dr’] 1, ( 6 6 )  

subject to the initial condition Go(0)  = Qo/Ql = I - e. 

5.2.  Boundary-layer problem for spin-down 

The initial angular velocity is largest for spin-down; hence L? = Qo, so 

Since Go(0)  = 1 and G0(co) = 1 + e, the quantity which measures the deviation of 
the interior angular velocity from the final value is now G,(T) - (1 + c) and this 
positive quantity never exceeds -e. A procedure equivalent to that used for 
spin-up is equally effective here. An expansion for f” about conditions at  the 
boundary is introduced: 

f(q ; 7) = i( 1 + 6) + i[G0(7) - ( 1 + e ) ]  f”(l)(q) + if”@)(q ; T ) ,  

6 = (sz,/L?,) - I < 0. 

and then linear problems for 
analogous to ( 6 2 )  is 

and p2) are formulated and solved. The result 

~ ( T ; T )  = i ( l + c ) + i [ G 0 ( 7 ) - ( 1  + ~ ) ] { l - [ I - i e ( P + i y ) - ~ q ] e - ( J + ~ r ) ~  1 
- i[G0(7) - ( I  + € ) I 2  [ (AT + B )  e-(P+iY)T - B e-2P71] 

- i [ Q o ( ~ )  - (1 + e)] [G0(7‘) - ( I  + e ) ]  d7’ Cq e - ( P + i y ) t ,  ( 6 7 )  1 
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with the same values of A ,  B and C as before. Equa,tion (67) reduces to (62) in 
the limit E -+ 0, but differs for finite E (this is first evidence of a dissimilarity 
between spin-up and spin-down- the boundary-layer pump is different). The 
asymptotic Ekman blowing and Hartmann current at  the edge of the boundary 
layer are found to be 

hl(m; 7) = (r, + r74 [Go@) - (1 + 41 - r2[~0(7) - (1  + 4 1 2  

- za2r,[~,(~) - (1 + 41 [Go(+) - (1 + 41 d71, (68) 

where 

r7 and rS measure inertial nonlinearity and the others are as before. The final 
problem for Go, appropriate for spin-down, found by substituting (68) and (69) 
into (55 ) ,  is given by - 

GA(7) = - Go(Go- 1 - E )  I?,+ r 7 e -  rz(G0- 1 - E )  - 2aT3 

- 2a2(G0- 1-6) r4- I?,€- r5(G0- 1 - E )  - 4a2F, 

subject to Go(0) = 1. 

6. Solutions and discussion 
Some analytical results for certain limits of interest are developed first and 

then numerical solutions are presented for the general problems contained in 
(66) and (71). 

6.1. Linearized hydromagnetic $ow 

It is readily confirmed that the nonlinear integro-differential equations (66) and 
(71) reduce properly to the linear problem of Loper & Benton (1970) as E -+ 0. 
For example, in spin-up, G0(7) ranges from 1 - E initially to 1 finally, so set 
G0(7) = 1 - eGt(7) with Gl(0) = 1 (the subscript 1 connoting ‘linear ’). Substitution 
into (66), and then division by E ,  followed by taking the limit E + 0, shows that 
G, satisfies 

In  view of the definitions of I?, and r4, the solution yields for the linearized form 

G0(7) = 1 - E e-p7, 
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exactly as in Loper & Benton (apart from their slightly different definition of E ) .  

A similar linearization of (7 1) yields 

G0(7) = 1 + e( 1 - e-PT), 

for spin-down, in agreement with Loper & Benton. Thus, linear hydromagnetic 
spin-up and spin-down are symmetric processes with the same dimensionless 
time duration rs = p-1 = y and this is always shorter than in the hydrodynamic 
case (y is a monotonically decreasing function of a).  The magnetic field promotes 
linear spin-up and spin-down through the dominating action of the induced 
Hartmann current. 

6.2. Nonlinear hydrodynamic spin-up and spin-down 

The influence of inertial and boundary-layer nonlinearity on the ordinary hydro- 
dynamic spin-up problem is studied by setting a: = 0, which suppresses all MHD 
effects (especially the electromagnetic nonlinearity). Equations (66) and (7 1)  
reduce to 

Gh(7) = $Go( 1 - Go) (6 -Go), Go(0) = 1 - e for spin-up, (72) 

Gh(7) = Q G o ( l - G , + e ) ( 6 - G o - ~ ~ ) ,  Go(0) = 1 for spin-down. (73) 

Clearly spin-up is no longer simply a symmetric reflexion of spin-down. Solutions 
of these equations, in implicit form, are 

for spin-down. (75) 

It is of interest to compare these formulae with the analogous results from the 
work of Greenspan & Weinbaum (1965). In  the present notation their approximate 
solutions are 

7 = 4(  1 - e)- j  {Go - 1 + E - 9(2 - 3e) In [( 1 - G,)/e]} for spin-up, (76) 

r = *(Go - 1) - (1 - i e )  In [( 1 + e - Go)/€] for spin-down. (77) 

Numerical comparison of (74) and (75) with (76) and (77) reveals them to be 
virtually equivalent for 161 up to Q and only slight (of order less than 15%) 
departures are present for IeI = 0.5. At larger values of Iel the Greenspan- 
Weinbaum procedure cannot be a valid approximation because of neglected 
higher order terms in e. Although Greenspan (1968, p. 169) notes that their 
method cannot be used for spin-up from rest (e = + I ) ,  equation (76) (or equa- 
tion (59) of the paper by Greenspan & Weinbaum) shows that lack of validity 
actually sets in for smaller e :  equation (76) becomes useless a t  e = 8,  which 
corresponds t o  e = 2 in the notation of Greenspan & Weinbaum. A subsidiary 
purpose of the present work then has been to rectify this deficiency. I n  contrask, 
note that either (72) or (74) predicts G0(7) = 0 for the case of spin-up from rest 
(e = + 1). The implied stagnant interior flow is clearly correct physically in R 
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FIGURE 2. Normalized interior angular velocity Go versus dimensionless time T for non- 
linear ordinary hydrodynamic spin-up and spin -down between identical pairs of angular 
velocities. 

laterally unbounded container because, on the Ekman spin-up time scale, there 
is, in that case, no interior angular momentum to be convected and there are no 
interior vortex lines to be stretched. Moreover, the work of Wedemeyer (1964) 
(described and verified qualitatively by Greenspan 1968) shows that a non- 
rotating core is still present on the Ekman spin-up time scale when the fluid is 
confined laterally by cylindrical side walls. This serves again to emphasize that, 
in applying the present work to fully contained fluids, one must restrict attention 
to the evolution of the interior angular velocity a t  or near the axis of rotation 
and for times only to order R-lE-4 (not the longer viscous diffusion time L2-lE-l). 

The solutions in (74) and (75) are plotted as functions of 7 for e = & 0.1, 5 0.5, 
f 0.9 and & 0.95 in figure 2. Recall that Go is the interior angular velocity 
normalized by the larger of the initial (no) and final (a,) angular velocities and T 

is the time normalized by the ordinary linear Ekman spin-up time (using the 
larger of R, and R,). The pair of curves associated with the same magnitude of 
Rossby number describe spin-up and spin-down between the same two values 
of angular velocity. For E = & 0.1, linear theory is adequate and the fluid response 
is purely exponential in time with spin-up time equal to spin-down time. However, 
figure 2 reveals that, for larger I E ~ ,  spin-down from Q0 to R, takes significantly 
longer than spin-up from a,, to R,. Thus, for E = 0.9, Go has approached its 
spin-up asymptote by 7 = 7, whereas the spin-down asymptote for E = - 0.9 is 
not yet closely approached even at  7 = 10 and the final approach is slow; e.g., at  
T = 30 for e = - 0.9, G, = 0-10122. In fact, the ultimate decay in Go is predicted 
to be algebraic in time rather than exponential, for large negative e (e.g. the 
asymptotic form of (75) for e = - 1, spin-down to rest, is Go N ( l+$~)- l ) .  
Furthermore, despite an evident general increase with 181 in initial angular 

23 F L M  57 



354 E. R. Benton 

0.7 

L I I I K  
0 1 2 3 4 5 6 7 8 9  

7 7 

FIGURE 3. Normalized instantaneous deviation 9 of angular velocity from the final value 
versus dimensionless time T in ( u )  hydrodynamic spin-up and ( b )  hydrodynamic spin-down, 
€or various Rossby numbers F .  

acceleration or deceleration both spin-up and spin-down require progressively 
more time to be completed as the nonlinearity increases. This is at  least partially 
due to our use of the larger of Qo and Ql for scaling purposes. For linear flow there 
is little difference between the two, but for larger 161, obviously Cl is not truly 
representative of the whole transient process, being in the sense of an over- 
estimate of the characteristic angular speed. 

Further comparison of spin-up and spin-down is facilitated by considering 
a quantity which is the instantaneous deviation in angular velocity from the 
final value normalized by the initial deviation from the final value: 

9Y7) = [GOW - Go(@3)I/[Go(O) - Go(m)l. (78)  

Clearly, 9 ( 0 )  = 1 and 9(m) = 0 independently of e. For example, the linearized 
hydromagnetic solutions above for both spin-up and spin-down assume the same 
forni, gL(7) = e-pT. 

Figures 3 (u) and ( b )  are plots for spin-up and spin-down, respectively, of 9 ( r )  
versus r for various values of e. It is seen that spin-up is relatively sensitive to 
Rossby number but spin-down, at least in the initial phases, is but weakly 
dependent on e. Partial spin-up is progressively slower as the nonlinearities 
increase, but by time r = 6 spin-up is essentially complete for all e (except, of 
course, e = + l),  whereas strongly nonlinear spin-down is still not complete at  
that time. 

The behaviour displayed in these figures is the result of both boundary-layer 
and inertial nonlinearity and these can either co-operate or oppose each other. 
Furthermore, as noted previously the boundary layers are most nonlinear 
initially whereas the inertial nonlinearity is then absent. Consequently, for ex- 
ample, in spin-down (figure 3 (b ) )  the effect of inertial nonlinearity in the interior 
is such as to reduce the rate of spin-down in Che later stages, but, as seen in 
Greenspan (1968), a nonlinear boundary layer on a surface in spin-down pumps 
more vigorously than its linear counterpart so this tends to promote nonlinear 
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spin-down in the early stages. Figure 3 ( b )  then implies that boundary-layer and 
inertial nonlinearity effectively counterbalance each other until times of order 
7 = 1, after which inertial nonlinearity dominates. In  contrast, Ekman layers 
on boundaries being spun up pump a t  most only slightly more vigorously than 
in linear theory (see Benton & Chow 1972) so the sluggishness associated with 
finite inertia of the interior fluid always dominates and nonlinear spin-up is 
retarded for all 7 (refer to figure 3 (a)) .  

The cross-over behaviour present for both spin-up and spin-down in Green- 
span’s figure 3.16 but clearly absent for spin-up here is due, at least in part, to 
his use of the initial angular speed for normalization. This coincides with our 0 
for spin-down but is an underestimate for spin-up (this also partially accounts 
for the failure of the Greenspan-Weinbaum theory for strongly nonlinear spin- 
up-their normalizing initial angular velocity is tending to zero in that limit). 
Incidentally, the favourable comparison of Greenspan & Weinbaum’s theory 
with Pearson’s exact numerical computations may in part be fortuitous. I n  the 
present notation, Pearson’s Ekman number gives E* = 0.063, which is not 
particularly small. Although it is difficult to  correct the present asymptotic 
theory for the effects of finite Ekman number, it is none the less clear that there 
are at  least two modifications which compete with each other. For finite Et ,  
the boundary layers are not vanishingly thin so there is less inviscid fluid to 
be spun up or spun down. On the other hand, the boundary-layer formation time, 
of order t N a-1 or 7 - E i ,  is also no longer negligible and this acts to delay 
spin-up or spin-down. Indeed, crude calculations suggest that the theoretical 
curves in figures 3 (a)  and ( b )  can be shifted either to the right or left, depending 
on circumstances, if finite E effects are included. For this reason it would be 
useful to rerun the Pearson calculation a t  smaller E. 

Generally, the present theory agrees adequately with that of Greenspan & 
Weinbaum where both are valid but extends the range of allowable to the 
complete range - 1 < 6 < 1. 

6.3. The electromagnetic nonlinearity 

The influence of the axial Ekman secondary flow in stretching or compressing 
the basic axial magnetic field lines is referred t o  as the electromagnetic non- 
linearity. A convenient gross measure of its strength is provided by a quantity, 
&(u, e), say (with d for ‘electromagnetic’) defined as the magnitude of the net 
fractional change in axial magnetic field between the initial and final states: 

-+OO)-BB,(T+O) 

BAT + 0) 

1 ( - / 3 ( m ; T ) d 7  -1 , (79) ) I  
1 4 ( 7  

&(a,€) = 

= IM,(co)-11 = exp 

where (47) and (54) have been used. The axial velocity function h,(oo, 7) needed 
here is giveninterms of G0(7) in (63) for spin-up and in (68) for spin-down. Figure 4 
displays &(a,€) versus 8 for several values of u, where values of G0(7) from 
numerical integration have been used. Except for u = 0 and 6 0.5, the axial 
field undergoes fractional changes of at  most 100 %. The general increase in & 

23-2 
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FIGURE 4. Strength of the electromagnetic nonlinearity 8 as a function of Rossby number 6 

for several values of magnetic interaction parameter a. 

with for fixed a is due to the ordinary increase in Ekman pumping with 
Rossby number. The apparent decrease in electromagnetic nonlinearity with 
increasing field strength (i.e. a)  occurs because the Ekman pumpingis increasingly 
suppressed by a strong field. The curve for a = 0 rises towards infinity as E -+ 1 
because, for spin-up from rest, Ekman suction continuously stretches the field 
lines but spin-up of the interior fluid does not occur (on the time scale of this 
analysis). When it is recalled that linearized theory allows no fractional change 
in B, (so 8 = 0)  then we must conclude that in general substantial ultimate 
changes in the applied magnetic field can be effected by even a slow secondary 
flow; the electromagnetic nonlinearity is important. 

6.4. Xtrongly magnetic flow 
The conclusion just reached prompts investigation of the transient effects of 
strong electromagnetic nonlinearity isolated from other complications. It is 
easily seen from (55) that, as a increases beyond 1, the evolution of interior 
angular velocity depends more and more on the Lorentz torque and less and 
less on the nonmagnetic mechanism (conservation of angular momentum). For 
large a the boundary-layer nonlinearity present in hl(co; 7) and &(a; T )  is also 
suppressed (cf. Benton & Chow 1972). Consequently, sensible approximations 
to (66) and (71) for magnetically dominated flow are 

Gi(7) = 2a21',(l - Go) exp( 2 r ' , / j 1  - G0(7')] d7') for spin-up; 

Gi(7) = - 2a21',(G, - 1 - 8) exp [G0(7') - 1 - E ]  dT' for spin-down. 

These equations can be immediately integrated once and the exact solutions 
which satisfy the initial conditions are identical in form when written in terms 
of 53 rather than G, (cf. equation (78)): 

9(7) = (a2P2+ Be) (a2,Pexp [r1(a2p2+ 2 ~ )  T ]  + 24-1. (80) 
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This solution reveals that the dimensionless spin-up or spin-down time rs for 
strongly magnetic flow is 

Since s is positive (negative) for spin-up (spin-down) we see that, as for non- 
magnetic flow, spin-down takes longer than spin-up. However, the asymmetry 
here is not large because in order for (80) to be a valid approximation we require 
a strong magnetic field, say a 2 2 (based on the forms of P(a), y(a) and the results 
of linear theory), and in this situation a2P2 3 31 but I2el is at  most 2; the Rossby 
number effect is limited to of order & 7 yo. Moreover, when a 3 2, then P2 % y 2  
so rs above reduces very nearly to y ,  as for linearized hydromagnetic flow. This 
analysis then shows that only for a moderate range of imposed magnetic fields 
a < 2 is nonlinearity important. Also, the quantitative enhancement of both 
spin-up and spin-down by a strong field (compared to non-magnetic flow) is 
given by (80) and (81). 

6.5. Numerical solutions 
The first-order, ordinary, nonlinear, integro-differential equations (66) and (7 1)  
are readily solved numerically under the given initial conditions as marching 
problems. The integrals were evaluated by the trapezoid rule and a step size 
of Ar = 0.001 was found to be adequate. Two independent checks (in addition 
to mesh refinement studies) are possible. Upon equating a to 0 we find excellent 
agreement between the numerical results and the analytic solutions in (74) and 
(75) .  Also, calculations a t  large a give the same results as those found from the 
analytic solution in (SO). 

Figure 5 displays numerical results for spin-up and spin-down between the 
same sets of values of Q,, and Ql but with a modest (a = I )  magnetic field present. 
Comparison with figure 2 (noting the different abscissa scale factor) reveals 
a general decrease in time duration of both spin-up and spin-down as well as 
a weakened asymmetry between the two processes. 

Figures 6 (a )  and ( b )  give results for B(r)  similar to those in figures 3(a) and ( b )  
but with 6 held fixed (at 5 0.95) and a variable. The dashed curves here give, 
for comparison, the theory for linear hydrodynamic spin-up and spin-down. 
Two important conclusions emerge from these results. First, for fixed Rossby 
number an increasing magnetic field always promotes both spin-up and spin- 
down but a weak field (say a < 0.5) is relatively ineffective for spin-down, yet 
highly effective for spin-up, the trend being most pronounced a t  large Is[ .  The 
explanation of this clear asymmetry between the two processes is readily under- 
standable in terms of the electromagnetic nonlinearity, During spin-up, the 
axial magnetic field continually intensifies because of field line stretching so 
even a weak initial field is subsequently effective (recall figure 4 for E > 0 and 
small a). However, axial field lines are continually dispersed laterally during 
spin-down so the magnetic coupling is less effective and an initially weak field 
becomes even more feeble in time. 

Another conclusion confirmed by these figures is that a sufficiently strong 
magnetic field, say a 2 2, suppresses any difference between spin-up and spin- 
down, and produces a flow substantially independent of Rossby number (note 

rs = (p2 + y2)/2y(a2P2 + 2s). (81) 
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FIGURE 5 .  Nornialized interior angular veIocity Go versus dimensionless time r for hydro- 
magnetic (a  = 1) spin-up and spin-down between identical pairs of angular velocities. 
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FIGURX 6. Normdized instantaneous deviation 9 of angular velocity from the final value 
XTersus dimensionless time r in strongly nonlinear ( a )  spin-up ( c  = 0.95) and ( b )  spin-down 
( c  = - 0.95) for several values of magnetic interaction parameter a. ---, c7. 

the similarity of profiles for cz 2 in figure 6). This again suggests that a strong 
field dominates all nonlinearities. As shown by Benton & Chow (1972), the 
Ekman-Hartmann pump becomes linear in this situation (because secondary 
flow is suppressed by a strong field). Furthermore, weakened Ekman pumping 
leads to only a minute electromagnetic nonlinearity (cf. figure 4 for large a) .  
The inertial nonlinearity in the fluid interior survives, but in the strongly mag- 
netic limit this is dominated by the electromagnetic body torque as a spin-up 
or spin-down mechanism. 
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The flow studied in this paper does not, of course, constitute a dynamo but 
it shares certain features. The imposed axial field corresponds to a poloidal field 
in spherical co-ordinates. As for dynamos such a field is stretched out into 
a toroidal field by the differential rotation across the boundary layers. The 
crucial half of a dynamo cycle, namely the regeneration of poloidal field from 
toroidal field, is impossible in the present flow because of the assumed axisym- 
metry. None the less, the imposed poloidal field does not decay away, despite 
the presence of both ohmic and viscous dissipation. In fact, during spin-up such 
a, field is replenished by stretching of the initial poloidal field lines and radially 
inward convection (by secondary flow) of poloidal fields. In  essence, the present 
flow fails t o  constitute a dynamo because the field is maintained laterally at  
infinity. 

The present theory pays no attention to the important question of hydro- 
dynamic instability. All that can be said at  this point is that, for the laterally 
unbounded case treated herein, instability of the Ekman-Hartmann layers is 
the major potential problem, but Gilman (1971) has shown such layers to be 
much less unstable than the pure Ekman layer. 

During the course of this study, the author profited from discussion with 
Peter A. Gilman, David E. Loper, Paul H. Roberts and especially Alfred Clark, Jr ,  
who reviewed the manuscript. The work was supported by the Atmospheric 
Sciences Section of the NationaI Science Foundation under NSP Grant GA- 16844. 
Numerical ealeulatioiis were carried out on the CDC 6400 computer of the 
University of Colarado by Dr Julianna H. S. Chow. 
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